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Abstract 
 

With the expansion of wind energy as an alternative to fossil fuel use, it is important that 

we have the tools necessary to analyze ecological impacts. While geographic information 

systems (GIS) have many tools for this analysis, the lack of reproducibility in the field will lead 

to both decreased accuracy of results and slow down knowledge gain during a time in which 

research speed could prevent extinctions. In this integrative geography and biology thesis, I 

study the reproducibility of a geographical analysis to better understand barriers to its 

reproduction. The study, conducted by consulting group DNV GL for the Wind Wildlife 

Research Fund, analyzes the relationship between tree-roosting bat fatalities and landscape 

features at on-shore wind farms in the northeast United States (Peters et al. 2020). I improve its 

future reproducibility by analyzing the ways in which both the bat fatality studies used to provide 

data for the Peters et al. (2020) study and the study itself could have been reported better for 

clarity and transparency with regards to methods, data, and sources of uncertainty. I also improve 

its future reproducibility by creating models and R scripts that reproduce the methods of this 

study to the fullest degree reasonably possible. The models and R scripts can be applied at 

various spatial scales to calculate landscape metrics (i.e., connectivity, percent area of land cover 

type, forest core area, etc.) and determine which are most correlated with hoary bat, eastern red 

bat, and silver-haired bat fatalities in a particular region. Methods, models, and R scripts are 

publicly available and could be applied to other species and land cover type contexts.  
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Introduction 

 

Brief on wind energy and bats 

Wind energy has emerged as a promising alternative to fossil fuels as the effects of 

climate change have already been playing out both in the United States and around the world. 

However, in the eastern US, it has been estimated that along forested ridgetops, between 15.3 

and 41.1 bats are killed per MW of installed capacity of electricity per year (Kunz et al. 2007). In 

terms of individual counts, one study estimated 880,000 deaths in 2012 given a 51,630 MW 

capacity in the US, which comes out to 17 bats per MW (Smallwood 2013). Wind turbine 

collisions are one of the two leading causes of bat fatalities, primarily affecting tree-roosting bats 

because they migrate (Bennett 2020, personal communication; O’Shea et al. 2016). The other 

leading cause of bat fatalities is white-nose syndrome, which primarily affects cave-dwelling 

bats because they are in direct contact more often and thus are more likely to spread the fungus 

(Bennett 2020, personal communication; Choi et al. 2020, Lorch et al. 2011, O’Shea et al. 2016). 

Prior to 2000, leading causes of bat mortality globally included chemical contaminants and 

humans intentionally killing bats for population control (vampire bat), human consumption, and 

food depredation control (O’Shea et al. 2016).  

While no tree bat species in the northeast US are currently listed as threatened or 

endangered, Frick et al. (2017) has predicted detrimental population effects in hoary bats with 

wind energy expansion. Hoary bats experience collisions at the highest rates, but there is also 

concern for other bat species. While perhaps wind turbine collisions are not causing significant 

population effects currently, if wind energy is scaled up with climate change, bat species may 

experience extreme population effects to the point of extinction (Dowling 2020). However, it is 

very difficult to quantify bat populations, though research is improving (Friedenberg et al. 2020, 

Weller et al. 2016).  

There are a few hypotheses that relate bat fatalities to land cover. The linear corridor 

hypothesis states that “wind energy facilities constructed along forested ridgetops create 

clearings with linear landscapes that are attractive to bats” (Kunz et al. 2007). Another 

hypothesis states that wind turbines create edge habitat suitable for bats (or perhaps the insects 

they feed on), increasing their population and thus collisions (Allison 2018, Allison et al. 2019, 

Kunz et al. 2007). Identifying the relationship between landscape factors and bat fatalities at 
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wind turbines can help point to behavioral hypotheses for collisions, which can then influence 

the types of deterrence methods we focus on developing. Knowing which areas are higher risk 

for bat fatalities can then inform where new wind turbines are placed and can help prioritize the 

development of and investment in deterrence methods where they are most needed.  

 

Study overview 

 To better understand how bat fatalities at wind turbines relate to land cover, and the 

methodology behind how one would analyze this, I reproduced a study by Peters et al. (2020). 

This study was conducted by consulting group DNV GL (Det Norske Veritas/Germanischer 

Lloyd) for the American Wind Wildlife Institute analyzing the relationship between tree-roosting 

bat fatalities (hoary bat, eastern red bat, and silver-haired bat) and landscape features (bodies of 

water, types of land cover, wetlands, roads, elevation, connectivity and fragmentation of forest 

blocks, and edge habitat) at on-shore wind farms in the northeast United States (Peters et al. 

2020). The study compiles bat fatality studies at wind turbine sites and uses a fatality estimator 

(modified Shoenfeld estimator) to standardize raw fatality counts across sites (Shoenfeld 2004). 

Then, Peters et al. (2020) calculate landscape metrics to characterize the composition of land 

cover around turbines at various spatial scales, and measure the correlation between estimated 

bat fatalities and landscape metrics.  

The Peters et al. (2020) study found that the hoary bat and eastern red bat experienced 

more fatalities in areas with more urbanization on the broader landscape and near smaller 

wetlands or a mixture of small and large wetlands. Silver-haired bat fatalities increased with 

distance from streams and rivers (Peters et al. 2020). Most significant relationships were at the 

25-km scale (Peters 2020). In reproducing the study, I identify gaps in both its reporting and the 

reporting of the bat fatality studies it draws on for data. 

By attempting to reproduce the study, I aim to better understand the barriers to producing 

statistically sound meta-analyses and identify gaps in reporting that would allow for 

reproducibility of methods and results, as well as better understand how applicable the study is to 

wind turbine siting. I also create QGIS models and R scripts that together reproduce (with a few 

differences due to the lack of full reporting) the methods of Peters et al. (2020), providing a 

detailed, accessible record of my work—something that, ideally, future geographical studies will 

include. This allows others to check my work, makes it much easier to reproduce or replicate the 
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study, and allow others to learn from my methods. While I was also not able to run the full 

model due to a bat fatality data availability, ideally, these models and R scripts will allow others 

to reproduce Peters et al. (2020) in the future, when there is enough fatality data available. The 

results of these methods include predictive modelling statistics for each bat species. From these 

numbers, a bat fatality risk map can be created as an effective way to communicate the findings 

of the meta-analysis and as tangible tool for future wind turbine siting. Interactive maps can also 

improve siting by effectively communicating risk factors based on a multitude of variables, and a 

bat fatality risk layer could be useful to be later incorporated into already existing models used 

by energy planners (Rodman & Meentemeyer 2006). However, siting can be a complicated 

process, taking into account favorable wind patterns, low environmental impacts, public 

acceptance, radar considerations, transmission line access, cost, military airspace, wildlife 

habitat, and of course, bird and bat fatality risk. As turbines are built, there are fewer and fewer 

spaces that are considered ideal for future projects, so siting by bat fatality risk may not even be 

possible at this point (Lantz 2020, Renz 2020). Knowledge of bat fatality risk is still a very 

important measure; it can inform the degree to which deterrence mechanisms should be 

implemented and can help to increase awareness and protection of declining bat species 

(Rodman & Meentemeyer 2006). Surprisingly, Peters et al. (2020) did not provide a map or 

online tool that communicated fatality risk values by location.  

This project will delve into the relationship between humans and spatial geographic 

modelling in environmental planning, as well as the relationship between humans and the 

environmental effects of wind turbines due to siting and use. In addition to improving siting 

processes and conservation methods with the tools to create a bat fatality risk map, I hope to 

increase understanding of reproducibility in geographic research, a field with broad 

environmental applications, and to create methodological improvements necessary for academic 

confidence and studies’ incorporation into policy.  
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Literature Review 

 

 In this literature review, I discuss the role of wind energy in the United States, previous 

research on the effects of wind turbines on bat fatalities, and emerging technologies to deter bats 

from turbine collisions. I then discuss the role of the private sector and government policy in bat 

research. As the Peters et al. (2020) study I reproduce analyzes the correlation between landscape 

metrics and bat fatalities, I discuss landscape ecology as a field to place this study within existing 

literature and then discuss reproducibility and replicability in the field of geography. Given the 

Peters et al. (2020) study uses a collection of bat fatality studies and standardizes the fatalities in 

a meta-analysis using a fatality estimator, I provide a background about ecological meta-analyses 

and bat fatality estimation models to situate the study in existing literature.  

 

Wind energy 

 As of October 2020, there were 65,548 wind turbines in the USGS Turbine Database 

including both onshore and offshore turbines, with a total rated capacity of 108,942 MW. A one-

MW wind turbine can displace 1,800 tons of carbon dioxide emitted from fossil fuels per year or 

save 60 million gallons of water used for nuclear energy per year (EESI, n.d.). Therefore, many 

foresee an increased reliance on wind energy necessary to replace other carbon-emitting energy 

sources in consideration of climate change.  

Currently, wind turbines in the northeast US are mostly sited along mountain ridges 

(Allegheny Mountains and Appalachian Mountains), adjacent to Lake Erie, and along the coast 

of Massachusetts (Figure 1, Figure 2). While this study only focuses on onshore turbines, 

offshore wind energy development is rapidly growing as costs have decreased (Lantz 2020). 

However, because not much is known about offshore bat migration patterns, and fatality 

estimators have not been developed for offshore contexts given carcasses fall into the water, 

more research is necessary.  

 Wind speed is one of the most important factors for wind turbine siting; for large wind 

turbines, average annual wind speed should be greater than 7 m/s; for small, grid-connected wind 

turbines, greater than 4.5 m/s; and for small, off-grid wind turbines, greater than 3 m/s (Rodman 

& Meentemeyer 2006). In addition to wind speed, there are a variety of factors that limit wind 

turbine siting prospects, including public acceptance, radar considerations, transmission line 
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access, cost, military airspace, wildlife habitat, and of course, bird and bat fatality risk (Lantz 

2020, Renz 2020). As wind energy expands, fewer ideal locations will remain, and more 

tradeoffs and compromises between stakeholders will need to be made as more land uses 

compete (Lantz 2020, Renz 2020). Moreover, as the demand for wind energy sources increases, 

particularly with the aid of government support and legislation pushing for renewable energy, 

there will be less time to research its effects, so it is important to do as much research as possible 

now (Johnson & Erhardt 2016, Lantz 2020).   

 
 
 

 
Figure 1. Map of Region 5 (USFWS) with level 2 ecoregions (EPA), Lake Erie, Lake Ontario, 
turbines from the USGS Turbine Database (as of 9/25/20), and the sites with studies found in the 
AWWIC database (sites calculated using Mean Coordinates tool in QGIS 3.6.2 to create one 
point for each project site when multiple turbines).  
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Figure 2. Map of Region 5 (USFWS) with heatmap based on individual turbines in USGS 
Turbine database (as of 9/25/20). Blue dots representing wind projects calculated using Mean 
Coordinates tool in QGIS 3.6.2.  
[Used 18 mm for heatmap radius. Heatmap applied to individual turbines (shown in Figure 1)].  
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Bat ecology & endangerment 

There are two primary types of bats: migratory tree bats and cave-dwelling bats. In the 

northeast US, there are three common types of tree bats (eastern red bat, hoary bat, silver-haired 

bat) and six types of cave bats (northern long-eared bat, little brown bat, Indiana bat, tricolored 

bat, big brown bat, and small-footed bat) (DEC NY, n.d., Williams 2006). Tree bats live year-

round in trees, but migrate south during the winter, foraging for insects and roosting in trees as 

they go (Fleming 2019). Cave bats, on the other hand, hibernate in caves or mines in the winter, 

though during the summer they often live in buildings, bridges, rock crevices, beneath loose 

bark, or in trees (DEC NY, n.d.). Wind turbines are much more likely to kill tree bats than cave 

bats because tree bats migrate (Bennett 2020). While no tree bat species are listed as endangered, 

many cave bats are listed as endangered due to white-nose syndrome. Bats in New England tend 

to breed in the fall, and the young are born in June or July (DEC NY, n.d.). Nearly all are 

nocturnal and use echolocation to navigate space (DEC NY, n.d.). 70% of bats worldwide 

consume flying insects, helping to control insect pests (DEC NY, n.d.). This can be particularly 

helpful for agriculture as fewer pesticides need to be used (DEC NY, n.d., Williams 2006).  

The value of bats in ecosystems, including agricultural ecosystems that affect humans directly, 

necessitates better understanding the effects of wind development on their populations. 

Surrounding land cover is one potential variable that determines bat activity. While Thompson et 

al. (2017) found that insectivorous long-distance migrants prefer open landscapes which allow 

for fast, non-dodging flight, Fleming (2019) found low turbine-related bat mortality in grasslands 

due to low bat activity or abundance in open landscapes. Conflicting findings necessitate more 

research on the relationship between bat fatalities and land cover type.  

Peters et al. (2020) researches this relationship, and their findings make sense within 

existing literature. Peters et al. (2020) found that hoary bats and eastern red bats tend to 

experience more turbine-related fatalities near wetland habitats and attributed this to higher 

insect abundance and given wetland habitats provide a drinking source. This is supported by 

Dixon (2012), who found that for the hoary bat, tree cover and proximity to water were 

positively correlated to activity levels. Peters et al. (2020) also found that the hoary bat and 

eastern red bat experienced more fatalities in areas with more urbanization. Dixon (2012) 

similarly found that at the 1,000 m scale, eastern red bat activity was positively correlated with 

impervious surfaces. Together, these studies indicate a correlation between bat activity and bat 
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fatalities at wind turbines. Dixon (2012) also found a positive correlation between immediate tree 

cover and eastern red bat activity. If tree cover indicates higher bat activity, and higher bat 

activity indicates higher turbine-related fatality risk, we can thus attempt to site new wind 

turbines in areas with less tree cover. However, Dixon (2012) found that silver-haired bat activity 

was negatively related to the amount of impervious surface, indicating that even among three 

migratory tree bat species, fatality risk must be treated differently. The results of Peters et al. 

(2020) support this finding, given there were more silver-haired bat fatalities at increased 

distance from rivers and streams, a relationship that was not found for the hoary bat or eastern 

red bat.   

To better understand bat fatalities, it is important to understand their population dynamics 

and migration patterns. Migration patterns are still not well understood, although acoustic 

monitoring, DNA barcoding, stable isotope analyses, and GPS tagging of live bats are currently 

being used to collect information (Hale 2020, personal communication; Weller et al. 2016). 

Hoary bats are the most frequently killed species at wind turbines, and it has the widest 

migration range of all North American small mammals (Cryan & Brown 2007). Hoary bats are 

particularly difficult to study because they roost individually, travelling in groups only during 

migration (Friedenberg et al. 2020, Weller et al. 2016). However, in the United States, it has 

been found that hoary bats tend to migrate south or to the coasts to overwinter (Weller et al. 

2016). Another study found that hoary bats tend to live in the northern United States and Canada 

in the summer, the Atlantic Coast of the United States in the fall, and in the Southeastern United 

States in the winter (Findley & Jones 1964). During spring migration, females migrating north 

are already pregnant as copulation occurs in the late summer and early autumn (Cryan 2003, 

Findley & Jones 1964). During the summer, males tend to be found in mountainous regions of 

western North America, and females tend to be farther east (Cryan 2003).  

The eastern red bat has been found in relatively high densities north of New York City 

along the coast, which may indicate shoreline migration during the fall (Cryan 2003). This may 

help explain the fact that bat fatalities peak in the northeast United States in August (Choi et al. 

2020). Some eastern red bats have also been found to migrate to the northern Great Plains during 

August (Cryan 2003). There are no clear differences between the spatial distribution of males 

versus females (Cryan 2003). However, in silver-haired bats, it has been observed that females 
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move north from overwintering sites earlier than males do in the eastern United States (Cryan 

2003).  

Frick et al. (2017) estimate that in the next 50 years, due to wind energy expansion alone 

the hoary bat population may decline up to 90% given an initial population of 2.5 million. While 

it is very difficult to estimate bat populations, Friedenberg et al. (2020) state that this estimation 

by Frick et al. (2017) is the most comprehensive estimate currently available. As the body of 

literature grows, we will be able to better understand overall trends extracted from localized 

studies. Moreover, if we can better understand the spatial distribution of bats by sex, we can 

target the use of deterrence mechanisms to protect female bats as population dynamics in 

polygamous species are more reliant on females than males (Weaver 2020).  

Offshore bat activity is also difficult to assess; Sjollema et al. (2014) measured bat 

activity off the mid-Atlantic coast by using ultrasonic detectors mounted on ships. Given 

acoustic monitoring provides information on only the presence of bats in an area, it is difficult to 

extrapolate information about population dynamics. However, Sjollema et al. (2014) found that 

78% of passes were eastern red bats. They also found that bat activity decreased as wind speed 

increased, and bat activity did not differ with distance from the shore (Sjollema et al. 2014). 

While the study was limited to a maximum of 21.9 km from the shore (Sjollema et al. 2014), bats 

are known to cross large bodies of water and may use remote islands as temporary roosts or 

stopover sites during migration (Peterson et al. 2014).  

Fatalities at wind turbines have been found to be correlated with low wind speeds, and 

before or after storm fronts when large numbers of bats tend to migrate (Fleming 2019). In a 

study based on a remote island off the coast of California that focused on hoary bats, migration 

was correlated with low wind speeds, low moon illumination, and high cloud cover (Cryan & 

Brown 2007). Another study, based at a wind project in New York, found that bat migration was 

correlated with warmer days and lower wind speeds (Reynolds 2010). Habitat destruction and 

polluted waterways are also threats to migratory insectivorous bats (Fleming 2019). While 

migration patterns, weather conditions, water pollution, and sex of bats are not analyzed as part 

of the Peters et al. (2020) study, these variables should be considered in future studies and risk 

models in addition to landscape patterns by overlaying rasters of each risk variable to calculate a 

more inclusive bat fatality risk metric. The lack of inclusion of these variables in the Peters et al. 
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(2020) study increases uncertainty in its results as a representation of bat fatality risk in the real 

world.  

 
Wind turbine collisions 

Between 2008 and 2017, 44 wind facilities in the northeast United States (USFWS 

Region 5) submitted bat and bird fatality reports to the US Fish & Wildlife Service (USFWS). 

According to this body of data, at least one individual from 128 bird and bat species has been 

killed by wind turbines (Choi et al. 2020). 17% of the fatalities reported were bats, with 90% of 

those being migratory tree bats (hoary bats, eastern red bats, and silver-haired bats) and the other 

10% being cave-dwelling bats (big brown bats and little brown bats) (Choi et al. 2020). Monthly 

mortality peaked in September and May for birds, and August for bats (Choi et al. 2020).  

Total bat fatality estimates in the US are between 600,000 and 949,000, whereas for 

birds, estimates have ranged between 140,000 and 679,000—though these are likely 

underestimates given wind expansion since the studies were conducted (Choi et al. 2020). 

However, bat fatalities only comprised 17% of reported bird and bat fatalities in the study 

because few facilities reported bat fatalities compared to bird fatalities (Choi et al. 2020). Wind 

development is thought to affect bat populations more than birds because bat mortality has been 

estimated to be higher than bird mortality at the majority of US wind facilities, and bats tend to 

have longer life cycles and lower reproductive rates than birds (Choi et al. 2020).  

Excluding unidentified individuals, passerines were the most commonly killed order, 

making up 78% of fatalities. Raptors made up just 5% of fatalities and included hawks, vultures, 

owls, one eagle, and one falcon. Other affected bird species included wood warblers, red-eyed 

vireos, black-throated blue warblers, black-billed cuckoos, ruffed grouse, wild turkeys, and 

turkey vultures. Of the bird fatalities, migrants made up 59%, partial migrants made up 34%, and 

residents made up 8%. 123 of the 128 bird species were protected under the Migratory Bird 

Treaty Act, and 108 were protected under the Neotropical Migratory Bird Conservation Act 

(Choi et al. 2020). Although more research on bird collision risk is necessary as well, my study 

focuses solely on bats.  
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Bat fatality mitigation strategies 

There is some evidence that migratory tree bats are attracted to wind turbines, with one 

hypothesis being that they may mistake them for trees (Hale 2020). Therefore, deterrence 

mechanisms are being developed and studied, including acoustic and visual deterrents (e.g., 

ultraviolet light, painting blades; May et al. 2020, WEST 2020). However, there are many 

challenges to implementing deterrence technology as it is difficult to access if broken, and rain, 

snow, and ice can deteriorate equipment (Cryan 2020). While there is a technology called 

IdentiFlight that uses machine learning to identify eagles from wind turbines in real time to 

better identify high risk times and potentially stop blades upon eagle identification, it has not yet 

been applied to bats (Duerr 2020).  

Curtailment is the reduction of energy production below a turbine’s capability, and it can 

be used in various ways to decrease bat fatalities. One way is by locking wind turbine blades in 

place during times of high bat traffic, and tradeoffs between bat fatalities and wind energy 

potential are being analyzed (WEST 2020). Another way to decrease bat fatalities is increasing 

cut-in speeds to decrease the time the blades are moving slower; this has been shown to decrease 

bat fatalities by an average of 50% (Arnett et al. 2010; Hale 2020, personal communication). 

This strategy is supported by another study that found that bats are at higher risk on nights with 

low wind speeds and thus slower blade rotational speed (Horn et al. 2010). However, increasing 

cut-in speeds can be costly and does not necessarily address the root cause of bat endangerment 

(Hale 2020). It is important to note that the word “curtailment” is used to refer to a wide variety 

of practices, including restricting energy flow to the energy grid to avoid overflow or shutting off 

turbines to abide by noise or shadow flicker agreements, but these practices are generally not 

what are meant when discussing curtailment in relation to bats (EWEA, 2012.).   

If mortality rates are consistent with rate of exposure to wind turbines, even a 25% 

decrease in hoary bat collisions likely will not be enough to prevent extinction with the level of 

“build-out” (expansion of wind turbine construction) necessary to substantially decrease the 

country’s carbon emissions (Dowling 2020). Therefore, curtailment and current deterrence 

methods will likely not be enough to prevent extinction, highlighting the importance of 

deterrence development before it is too late (Dowling 2020).  
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Roles of private sector and government policy in bat research 

Bats face a multitude of other stressors apart from wind turbines, including habitat 

destruction, polluted waterways, the global decline of insects, and diseases (Fleming 2019, Hale 

2020). The wind industry is taking the lead on this issue by investing a lot of resources into 

solutions and taking responsibility for an issue that involves aspects outside of its control (Hale 

2020). Some argue that other industries and sectors should therefore become more involved and 

invested in research and solutions as well (Hale 2020, personal communication). This includes 

those directly contributing to bat habitat loss and other stressors. However, given that all humans 

benefit in some way from bats, there is an imperative as a broader stakeholder to contribute to 

research and solutions (Hale 2020, personal communication; Hale 2020).  

Although the listing of bats as endangered would allow bat researchers to more easily 

acquire regulatory support for their research, costs and red tape associated with regulation can 

also make research and wind project development very difficult (Hale 2020, personal 

communication; Hale 2020; McIvor 2020). It is therefore important to do research and 

implement bat protection measures, not only to protect the species itself, but also to avoid the 

burdens that come with endangerment regulations if populations decline (McIvor 2020). The 

avoidance of the burdens of endangerment regulations is therefore an incentive for energy 

developers to participate in this research and investment in deterrence mechanisms.  

 

Landscape ecology 

 Landscape ecology allows one to understand a landscape through patterns over space and 

time, often using a hierarchal approach (e.g., gap, stand, watershed, landscape) to understanding 

how mosaics of patches form a landscape (Urban et al. 1987). It is often used to study 

disturbances and regenerative processes (Urban et al. 1987).  

While GIS tools appear to be commonly used in landscape ecology, studies tend to use 

ESRI (proprietary) software such as ArcGIS, ArcView, and ArcInfo (Steiniger & Hay 2009). 

QGIS and SAGA, both free, do not seem to be used often (Steiniger & Hay 2009).  

 Peters et al. (2020) use a SAGA tool through QGIS for one part of their analysis and 

FRAGSTATS for many of the landscape metrics calculations, with the rest of the spatial analysis 

done in ArcGIS. Peters et al. (2020) also use methods common to landscape ecology, including 

distance measurements, calculating diversity and evenness, and using digital terrain models such 
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as a DEM (Steiniger & Hay 2009). The use of accessible and open source software and methods 

helps increase reproducibility.   

 

Reproducibility & replicability in geography 

The reproducibility of a study is determined by whether using the same data and methods 

can lead to similar results (Kedron et al. 2019). The replicability of a study is determined by 

whether similar results can be obtained using new data but the same methods (Kedron et al. 

2019). Reproducibility and replicability allow for more confidence in study methods and results 

but rely on well-documented methods, data sources, and results in the original study. Sources of 

uncertainty can occur throughout the scientific process, from conceptual uncertainties (e.g., 

applying a theory incorrectly, using the wrong scale, changing contexts) to measurement 

uncertainties (e.g., finding original data, resolution, completeness, and consistency of the data), 

to analytical uncertainties (e.g., not having access to full methods, lack of standards for 

reporting, uncertainty or change within software or tools, not being able to extrapolate methods 

from textual reporting), to communication uncertainties (e.g., if publications are free and open to 

the public, if studies are published in the first place, especially those with non-significant results) 

(Kedron et al. 2019). This wide variety of sources of methodological uncertainty have led some 

to believe that “replicability in geographical analysis may not be an obtainable objective” 

(Kedron et al. 2019). However, expansion and use of open source GIS has the potential to create 

an ethic of transparency and full reporting in the field of geography, decreasing sources of 

uncertainty (Singleton et al. 2016). 

Replicability in geography can also be difficult because spatial heterogeneity and spatial 

dependence inherent to geographical analyses make causal inference difficult to both 

demonstrate and apply to other locations or situations. Spatial heterogeneity, the uneven 

distribution of a variable across space, makes averages relatively uncharacteristic of the 

landscape and makes studies dependent on geographic boundaries (Kedron et al. 2019). Spatial 

dependence, the relatedness of things that are closer together, means that the response at an 

individual location to an independent variable may change depending on its interacting with 

surrounding location (Kedron et al. 2019). However, analyzing and improving reproducibility 

and replicability may allow for a better understanding of the degree to which demonstrated 

causal effects can be applied (Kedron 2019). In other words, with more studies with differing 
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sample groups, it may be possible to identify how much causal interference has affected results, 

as opposed to the independent variables measured.  

There have been attempts to reproduce and replicate results in other fields, including 

ecology (Kelly 2019), psychology (Open Science Collaboration 2015), computational 

neuroscience (Topalidou & Rougier 2015), and social science (Camerer et al. 2018). However, 

there do not seem to be many geographical reproducibility and replicability studies (Kedron et al. 

2019), with a few exceptions. Ostermann and Granell (2017) focused on volunteered geographic 

information (VGI) within geographic information science (GIScience), finding that not one of 

the 58 papers they find provided access to raw data or analysis code and tools (Ostermann & 

Granell 2017). Nüst et al. (2018) also studied GIScience studies and found that reproducibility 

levels were low due to lack of incentive (Nüst et al. 2018). Konkol et al. (2019) studied the 

reproducibility of computational geoscience code, finding that even with source code, there were 

many issues with running the code and/or differences in results (Konkol et al. 2019).  

While few studies publish models of their methods, even if a model is created and 

published, one often needs the original—usually proprietary— software to run the models 

(Steiniger & Hay 2009). This can often be a huge barrier as proprietary software can be 

expensive. Moreover, algorithms behind proprietary tools tend not to be public (open source), 

making it difficult to identify potential disparities between what a study is attempting to do and 

what a tool actually does.  

With regard to the Peters et al. (2020) study specifically, it is important to attempt to 

reproduce the study to better understand how data inclusion or exclusion, methods, and lack of 

detail in reporting can affect the ability to reproduce the study or lead to different results. A 

better understanding of the sources of uncertainty present in the study can help with future study 

designs that produce more consistent results. My reproduction of the Peters et al. (2020) study 

allows for a better understanding of uncertainty. Moreover, with the use of QGIS and R, both 

free and open source, others can see, learn from, and execute the methods. This decreases 

barriers to doing similar analyses in the future because my work can be used as an example case.  
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Ecological meta-analyses 

Many individual studies are often carried out separately by different researchers, though 

with similar research questions or measurements. To prevent repetitive work and to use what 

knowledge we already have, these individual studies can be compiled into a larger study. This 

provides an opportunity to use these individual studies to understand the research question on a 

broader scale. With the use of a variety of methods and with studies performed in many different 

locations, there is a need to be able to compare the results of each individual study for a better 

understanding of the results of the research question at a broader scale. Meta-analyses allow for 

this comparison and can be used in ecology to better understand processes or states across space 

and/or time given many individual studies. Ecological meta-analyses give context for isolated 

studies and can answer larger questions that isolated studies cannot, providing a systematic 

review of a topic (Harrison 2011).  

Meta-analysis is “the statistical synthesis of the results of separate studies” (Gurevitch et 

al. 2001). It is said to be “the grist for the mill of ecological forecasting, perhaps the most 

important endeavor of 21st century ecology” (Ellison 2010). Generally, ecological meta-analyses 

compare relationships, or effect sizes, across studies. “Bootstrapping” allows for a statistical 

aggregation of results from many small studies (Adams et al. 1977). Meta-analyses can also 

aggregate the values of dependent variables, as opposed to effect sizes, across various studies 

(Gerstner et al. 2017, Harrison 2011). For example, studying population abundance of freshwater 

and terrestrial insects across studies would not be considered an effect size, which implies a 

calculation of a relationship between population and another variable, but still qualifies as a 

meta-analysis (van Klink et al. 2020). Another example of a meta-analysis on values rather than 

effect sizes is the infection fatality rate of COVID-19 (Meyerowitz-Katz & Merone 2020).  

 Ecological studies often have high variation in methodological design and with many 

confounding factors, with original study aims often differing from those of a meta-analysis 

(Whittaker 2010). For example, Whittaker (2010) studied three meta-analyses on the species 

richness-productivity relationship (SRPR) based on the same data and found highly divergent, 

inconsistent results across the studies. He highlights the difficulty in producing SRPR meta-

analyses with confidence, implying it may be impossible to be achieve consistent results from 

available data (Whittaker 2010). He then suggests that researchers should be wary of the use of 

meta-analysis in ecology in general (Whittaker 2010). However, Ellison (2020) fights this idea, 
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stating that with transparent and detailed methods, it is possible to perform meta-analyses we can 

be confident in. Important details necessary for the inclusion of individual studies into ecological 

meta-analyses include reporting raw data with units, an extensive explanation of methods that 

has also ideally been used in previous papers, negative or non-significant results, exact 

geographical locations, environmental features, species names, spatial scale, temporal scale, and 

meta-data (Gerstner et al. 2017).  

 Ecological meta-analyses have the potential to provide statistically-sound results 

provided more research is conducted on how to improve meta-analyses’ reproducibility and 

sources of uncertainty, and with a more intentional approach to constructing meta-analyses by 

designing multipart studies as opposed to bringing together studies “ad hoc,”  to avoid such large 

differences between the aims of individual studies and a meta-analysis as a whole (Ellison 2010, 

Nichols et al. 2019, Nichols et al. 2021).  

 Peters et al. (2020) may not be considered a meta-analysis as strictly defined as a 

standardization and comparison of effect sizes, as opposed to the values of a dependent variable 

(Harrison 2011). However, because other studies that compare values, as opposed to an effect 

size, do define themselves as meta-analyses, and Peters et al. (2020) follow the basic principles 

of comparing values (estimated number of bat fatalities per turbine per year) across fatality 

studies’ various methods and results, I consider the study to be a meta-analysis (van Klink et al. 

2020, Meyerowitz-Katz & Merone 2020). In this case, even if study methods vary, the aims of 

individual studies are consistent (quantifying bat fatalities at a wind turbine site), which increases 

confidence in their overall ability to be incorporated in a meta-analysis. This comparison via a 

meta-analysis is achieved using modified Shoenfeld estimator to standardize fatality studies 

across sites and methodology.  

 

Bat fatality estimation models 

To quantify the effects of wind turbines on bat populations, the USFWS voluntary land-

based wind energy guidelines (WEGs) suggest post-construction fatality monitoring studies. In 

these studies, which is the fourth step (Tier IV) of the guidelines, searchers walk transects of 

study plots around wind turbines to find and identify bat carcasses (USFWS 2012). Raw bat 

fatality counts are conducted by different field researchers, at different wind turbine sites, using 

different methodology, so raw counts require different adjustments across sites to accurately 
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represent total fatalities. Therefore, a fatality estimator is used to standardize across sites by 

adjusting raw counts to provide total fatality estimates per turbine per year. Fatality estimators 

take into account differences in study methodology and spatial context, including the radius of 

the study area, the timing of searches, the amount of time a carcass stays on the ground, and 

searcher efficiency. These measurements allow the estimator to adjust raw fatality counts to 

include carcasses outside of the searched area, removed by scavengers or deteriorated, or missed 

by searchers (Huso et al. 2016).  

Therefore, the WEGs also suggest that during post-construction fatality monitoring 

studies, in addition to counting the number of bat carcasses, there should also be trials to 

determine searcher efficiency and the amount of time a carcass stays on the ground (carcass 

persistence). To do this, carcasses are randomly distributed in the study plot to test what 

proportion are found by searchers and to measure how long they stay before they are taken by a 

predator. Fatality estimators use this information to adjust raw fatality counts for carcasses 

searchers may not have found. Estimates are typically reported as number of fatalities per turbine 

per year.  

Many estimators have been developed over the years, including the Naïve (2003), 

Shoenfeld (2004), Huso (2010), Korner-Nievergelt et al. (2011), Korner-Nievergelt et al. (2015), 

Wolpert (2013), and Dalthrop et al. (2014) estimators. The Naïve estimator was developed ad 

hoc, primarily by Wally Erickson of Western EcoSystems Technology, Inc. (WEST, Inc.) 

(Erickson et al. 2000). The Erickson et al. (2000) estimator, however, assumed that carcass 

arrivals and removals were in balance leading to an underestimation, but with the help of Peter 

Shoenfeld a “periodic” estimator was created that accounted for removal of carcasses after 

observation (Shoenfeld 2004). However, the Shoenfeld estimator still often underestimates total 

fatalities because it assumes a constant carcass removal rate when in reality, carcasses tend to 

disappear quickly at first and slow over time (Huso 2021, personal communication). In response, 

Huso (2010) developed an estimator that allows any form of persistence distribution (e.g., 

Weibull, log-normal, log-logistic, etc.; Huso et al. 2016). Korner-Nievergelt et al. (2011) allowed 

for k, searcher efficiency, to vary between 0 and 1 instead of being a binary variable, so that a 

carcass not detectable in the first search may become detectable in following searches (“bleed-

through”; Huso et al. 2016). In an updated version of the model, Korner-Nievergelt et al. (2015) 

allow for non-exponential persistence distributions and for carcasses to arrive during search 
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intervals (Huso et al. 2016). Wolpert (2013) created a generalized, partially periodic estimator 

that incorporates aspects of the Erickson (2000), Shoenfeld (2004), Huso (2011) and Korner-

Nievergelt et al. (2015) estimators, allowing for non-constant scavenging rates, and non-binary 

and variable searcher efficiency (Huso et al. 2016). Dalthorp et al. (2014) is similar to the 

Wolpert (2013) but allows for a non-constant carcass arrival rate and combines into one factor 

(k) the effects of bleed-through and carcass aging on searcher efficiency (Huso et al. 2016). 

Dalthorp et al. (2014) is the best estimator for low counts or rare species (Huso 2021, personal 

communication).  

The Generalized Fatality Estimator (GenEst), published by the USGS in cooperation with 

the Bureau of Land Management and the National Renewable Energy Laboratory in 2018 in the 

form of a free software, hopes to be the single estimator that combines previous knowledge and 

can apply to any fatality study, as previous estimators often applied differently depending on a 

situation (Dalthorp & Huso, n.d.). Strickland et al. (2011) states that it is best to use multiple 

estimators and compare them, as all have biases. However, this was before the GenEst estimator, 

which has been shown to have no bias (Huso 2020). The GenEst estimator, however, requires 

full raw data, rather than summaries (studies often published averages using large timeframes), 

which makes it difficult to use on past studies which have only published summarized data 

(Huso 2021, personal communication). While Shoenfeld (2004) does provide a methodological 

approach to uncertainty using the Monte Carlo algorithm (Shoenfeld 2004), neither Peters et al. 

(2020) nor any fatality study I have seen quantifies uncertainty. Therefore, another benefit to the 

GenEst estimator is that it automatically calculates uncertainty within the program, and the 

calculation of uncertainty has been shown to be more accurate than uncertainty measures used by 

previous estimators (Huso 2020).  

Peters et al. (2020) selected the Shoenfeld estimator for their meta-analysis because of the 

limited availability of data reported in the studies in the American Wind Wildlife Information 

Center (AWWIC) database, from which Peters et al. (2020) primarily gathered fatality data. 

Newer estimators require more information than many studies provide, such as ground cover 

conditions for GenEst (Simonis et al. 2018) and carcass persistence distribution for the Naïve 

Estimator (Huso 2010).  

While the Shoenfeld estimator is used primarily in the context of bird and bat collisions 

with wind turbines, it has also been applied to other situations of animal mortality by 
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anthropogenic hazards, including roadkill (Gerow 2010, Teixeira 2010, Teixeira 2016), avian 

collisions with distribution lines (Gustin et al. n.d., Stake 2009), avian collisions with solar 

panels (Walston et al. 2016), and avian mortality from pesticide exposure (Etterson 2013).  

The Shoenfeld estimator was modified in the Peters et al. (2020) study to account for 

density-weighted proportion (dwp) of carcasses available for observation during the search. The 

following assumptions were:  

 
• An exponential carcass removal rate; 
• All bats killed are eventually found (and removed) by researchers or 

removed by scavengers; 
• Regular search intervals (an earlier version of equation assumed that 

search intervals were a Poisson process [Shoenfeld 2004]); 
• All searchers achieve the average searcher efficiency rate; 
• All carcasses (old and new) have the same probabilities of discovery 

(discovery failures are entirely random with respect to carcass age); 
• Fatality rates and searcher efficiency are approximately constant over 

time; and 
• Bleed-through (i.e., carcasses not detected by searchers persist until a 

subsequent search, making it available for future detection) occurs 
throughout the study. 

 (Peters et al. 2020, 14-15).  
 
 

In addition to taking into account observed fatalities, average time of carcass persistence, 

proportion of carcasses found by searchers (searcher efficiency), and average interval between 

searches in days, as the Shoenfeld estimator (2004) does, the modified Shoenfeld estimator used 

in the Peters et al. (2020) meta-analysis also takes into account dwp. Peters et al. (2020) created a 

conversion from search area radius to dwp, but it does not seem to be a commonly accepted 

conversion and makes many assumptions about carcass distribution:  
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Search bin (m) Assumed proportion of 
carcasses within band 

Cumulative proportion of 
carcasses in plot 

0-10 0.216 0.216 

11-20 0.180 0.396 

21-30 0.126 0.522 

31-40 0.200 0.722 

41-50 0.094 0.816 

51-60 0.069 0.884 

61-70 0.069 0.953 

71-80 0.024 0.977 

81-90 0.020 0.997 

91-100 0.003 1.00 

 
Table 1. Conversion from search area radius to density weighted proportion (Table 1 in Peters et 
al. 2020). Dwp adjusts for the distribution of bat carcasses around a wind turbine. Bats are more 
likely to land near the turbine, decreasing with distance away (see the middle column). These 
numbers in the middle column are “based on proportion of carcasses observed at a subset of 
wind energy facilities, weighted by number of searches that included the concentric bin within 
the search plot” (Peters et al. 2020). The right column cumulatively adds the search bin bands 
(concentric circles) to calculate the proportion of bats likely within a given radius and then used 
as dwp in the modified Shoenfeld estimator. Because not all studies calculated a dwp, Peters et 
al. (2020) calculated an average from other available studies, which were based on carcass 
distance from the turbine and influenced by ground cover conditions and which areas were 
unsearchable. This average was then applied to all of the fatality studies. These dwp’s assume 
that all bats landed within 100 meters of a given turbine and do not take into account effects of 
wind direction, wind speed, and variation of ground cover and unsearchable areas among 
individual sites (Peters et al. 2020). Moreover, turbine size is likely correlated with the fall 
distance of bats from turbines (Choi et al. 2020).  

 
 

  



26 

Equation 1. Modified Shoenfeld Estimator (Peters et al. 2020, 14) 
 

𝑛𝑛 =  
𝑐𝑐

�𝑡𝑡 × 𝑝𝑝
𝑙𝑙 ×  𝑒𝑒

𝑙𝑙
𝑡𝑡 − 1

𝑒𝑒
𝑙𝑙
𝑡𝑡 − 1 + 𝑝𝑝

� × 𝑑𝑑𝑑𝑑𝑝𝑝

 

 
𝑛𝑛 = estimated number of fatalities per turbine per study year 
𝑐𝑐 = number of fatalities observed 
𝑡𝑡 = average time of carcass persistence in days 
𝑝𝑝 = proportion of carcasses found by searchers 
𝑙𝑙 = average interval between searches in days 
𝑑𝑑𝑑𝑑𝑝𝑝 = density-weighted proportion of carcasses that were 
available for detection during searches 
 
 

Starting with 𝑑𝑑𝑑𝑑𝑝𝑝, the lower the radius is, and the more the fatality estimate need to be 

adjusted to take into account the carcasses likely missed outside of the plot. For example, if a 

study plot was only searched within 30 meters, the raw fatality number (𝑐𝑐) would be divided by 

0.522, which is the same as approximately doubling it, to take into account the carcasses outside 

of the search plot.  

 

Expression 1. 
𝑡𝑡 × 𝑝𝑝
𝑙𝑙

 

 

Equation 1 divides the raw fatality number (𝑐𝑐) by time of carcass persistence (𝑡𝑡) 

(Expression 1). The shorter a bat persists, the greater the chance a searcher will miss a bat 

carcass and thus not count it, requiring a larger increase in 𝑛𝑛 to adjust for missed carcasses. It 

also divides the raw fatality number (𝑐𝑐) by the proportion of carcasses found by searchers (𝑝𝑝) 

because the lower the 𝑝𝑝, the more carcasses the searchers did not account for, necessitating a 

higher adjustment for 𝑛𝑛. Equation 1 effectively multiplies by 𝑙𝑙 (due to inverting the divisor); the 

higher 𝑙𝑙 is, the more likely carcasses were missed in the search and therefore requires an 

adjustment, increasing 𝑛𝑛. 
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Expression 2. 

𝑒𝑒
𝑙𝑙
𝑡𝑡 − 1

𝑒𝑒
𝑙𝑙
𝑡𝑡 − 1 + 𝑝𝑝

 

 

Expression 2 is the part of Equation 1 that allows for a non-steady arrival and removal 

rate of carcasses, as opposed to the previous assumption of an equal arrival and removal rate. 

With more carcasses found by the searchers (𝑝𝑝), the value of the segment decreases, increasing 𝑛𝑛 

as a whole. It is not clear why more carcasses being found by the searchers would warrant 

needing to compensate for more missed carcasses, though. Other researchers have run into 

difficulties with deriving the Shoenfeld (2004) as well; Bispo (2012) stated, “no clear theoretical 

background is given and, despite the effort, it was not possible to derive this expression” (Bispo 

2012, 16).  
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Materials & Methods 

 

Study plan 

 In this study, I reproduce the methods of Peters et al. (2020) to the fullest extent 

reasonably possible based on accessible information. Peters et al. (2020) study the correlation 

between bat fatalities at wind turbine sites and surrounding land cover. To do this, they compile 

bat fatality studies, standardize raw fatality counts using a modified Shoenfeld estimator to 

calculate total bat fatality estimates per turbine per year. They then calculate landscape metrics 

on the land cover surrounding wind turbines to characterize land cover class configuration. 

Given bat fatality estimates and landscape metrics at each turbine, Peters et al. (2020) then run 

statistical analyses (random forests and a generalized linear model) to measure whether there is a 

correlation between particular aspects of land cover configuration and bat fatalities.  

With a few exceptions, I follow the methodology of Peters et al. (2020) closely, creating 

models and code that reproduce their methods. I gather bat fatality studies and assess if enough 

information is reported to be included in a meta-analysis using a modified Shoenfeld estimator to 

standardize raw fatality counts. Through systematically assessing each fatality study for each 

variable necessary for inclusion in a modified Shoenfeld estimator, I identify gaps in reporting 

that can act as guidance for what to include in future fatality study reports. Where data are 

unavailable, I still provide code so Peters et al. (2020) can be easily reproduced in the future 

when more data are available.  

I also identify gaps in Peters et al. (2020)’s reporting by reproducing their methods, step-

by-step. This practical reproduction ensured I encountered any gaps in their reporting. These 

gaps contributed to uncertainty in how analyses were conducted and led to differences in the 

methods of my reproduction. However, in providing full, transparent, and detailed reporting in 

my reproduction of Peters et al. (2020), I decrease barriers to improvement. Other researchers 

can critique my work and easily create updated versions because R code and QGIS models are 

easily editable. Providing code and models with detailed documentation will also make future 

studies with similar methods less laborious, both for other researchers and myself.  
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Peters et al. (2020) study methods & differences when reproducing 

I followed the methods of the Peters et al. (2020) study (Figure 3), focusing on Region 5 

(the Northeast USA) as defined by the U.S. Fish and Wildlife Service, as opposed to both 

Regions 3 (the Midwest USA) and 5 as Peters et al. (2020) did. I was able to reproduce the study 

only for Region 5 because Peters et al. (2020) treated the two regions separately in their analysis. 

I audited bat fatality studies in Region 5 from the American Wind Wildlife Information Center 

(AWWIC) database to assess whether they could be incorporated into a meta-analysis. I then 

created models in QGIS and R scripts that reproduce the spatial and statistical analyses done by 

Peters et al. (2020) to measure landscape statistics and their correlations with bat fatalities at 2.5, 

5, and 25 km of each turbine studied, in addition to the local facility footprint itself. Data sources 

for the independent variables (landscape metrics) included the North American Land Change 

Monitoring System, Natural Earth, the US Census Bureau’s TIGER data, the USGS National 

Hydrography Dataset, and the USGS Wind Turbine Database.  

 

 
Figure 3. Workflow of Peters et al. (2020) methods, visualized by M. Tango. Panel a: fatality 
estimates. Panel b: landscape metrics. Panel c: statistical analyses. Link1 to image 
 
 

 
1 https://github.com/mtango99/thesis/blob/main/results/figures/Workflow_Figure3.png. 

https://github.com/mtango99/thesis/blob/main/results/figures/Workflow_Figure3.png
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Figure 3b. Workflow of landscape metrics part of Peters et al. (2020) methods.  
 
 
 
 
 
 
 
 
 
Bat Fatality Estimates 

The Peters et al. (2020) study used 52 studies from the American Wind Wildlife 

Information Center (AWWIC) database as well as 17 studies from reaching out to individual 

researchers through the American Wind Wildlife Institute (AWWI). The AWWIC database is 

unique because it brings together fatality studies, decreasing barriers to doing meta-analyses 

which otherwise would entail tracking down individual studies. These studies were for both 

Region 3 and 5 as defined by the US Fish and Wildlife Service. I decided to focus solely on 

Region 5, finding 32 studies through the AWWIC database with the following criteria: Region 5, 

Post-Construction Fatality Study, 2006-2015, bats, land-based wind energy (on-shore). Peters et 

al. (2020) retained studies from 27 wind facilities in Region 5 after assessing each for the 
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following criteria, but did not report how many individual studies they retained (this would be a 

different number given facilities often have yearly studies):  

 
• Were from facilities located within the range of the three target species 

(i.e., hoary bat, eastern red bat, and silver-haired bat); 
• Were from facilities located in USFWS Region 3 or Region 5; 
• Were collected by scheduled searches throughout the temporal window 

that encompassed peak fall migration periods for all three species, defined 
as 15 July – 15 October; 

• Were based on formal PCFM studies that accounted for, at minimum, 
searcher detection bias and carcass removal bias (Huso et al. 2016; 
Johnson et al. 2016); 

• Were from facilities that were not known to be implementing curtailment 
(i.e., raised cut-in speeds) at one or more turbines during the PCFM 
period; and 

• Included the following additional fields: 
o Facility location (latitude/longitude) 
o Facility size (number of turbines, total operating capacity in MW) 
o Mean hub height 
o Year 
o Start and end dates of PCFM 
o Search plot size 
o Number of turbines searched 
o Mean search interval (days between searches) 
o Searcher efficiency rate (percent observed) 
o Carcass persistence rate (average time of carcass removal) 
o Raw counts of hoary bat, eastern red bat, and silver-haired bat 

fatalities observed during PCFM studies (excluding incidental 
observations) 

(Peters et al. 2020, 11) 
 

Although the AWWIC database is certainly the most centralized, comprehensive resource 

for wind-wildlife data in the United States, it certainly has gaps as it only represents 

approximately 30% of onshore wind sites in the United States (AWWI 2021). One small 

example of a gap is that two of the three sets of data on bat fatalities I received from the Vermont 

Agency of Natural Resources (VT ANR) were not in the AWWIC database (Vermont recently 

started to require fatality monitoring studies to be shared; Bennett 2020). I did not, however, use 

the Vermont bat fatality data acquired from the VT ANR in my study because there was not 
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enough detail for inclusion. I only used studies from the AWWIC database. The USGS Turbine 

Database provides locations of all turbines, but not all sites perform fatality studies as the 

USFWS wind energy guidelines (WEGs) are solely recommendations (Figure 1, USFWS 2012). 

There may also be bias to the data released given wind turbine operators are likely hesitant to 

release incriminating data, particularly for endangered bats, which are illegal to kill or harm. 

This is particularly relevant for states in which it is not required to release fatality monitoring 

studies.  

 Of the 32 studies that matched my search criteria in the AWWIC database, 20 had raw 

bat fatality data outputs. For each of these 20 studies, I identified whether they reported fully 

enough to be included in a modified Shoenfeld estimator by searching for the following criteria: 

raw bat fatality data from between July 15-October 15, average time of carcass persistence in 

days, proportion of carcasses found by searchers (searcher efficiency), average interval between 

searches in days, and search plot radius in meters (Figure 3a). Search plot radius was used to 

calculate density-weighted proportion (dwp) of carcasses that were available for detection, which 

was then used in the modified Shoenfeld estimator (see Table 1 for conversion from radius to 

dwp). Turbine height in meters was also necessary for the random forests analysis, and I used the 

USGS Wind Turbine Database to assist in finding these heights if not reported in the bat fatality 

studies themselves. I did not include incidental carcass findings in raw bat fatality counts. 

I created a spreadsheet2 with data from each study, finding that 13 of the 20 studies met 

all criteria. However, 9 of these 13 studies required assumptions and estimations for the search 

plot radius, as many reported rectangular as opposed to circular search plots, and some reported a 

range of plot sizes. While it is a simple calculation to calculate the radius of rectangular plots, a 

circular plot makes more sense to use because carcasses fall from a central location. It may be 

possible to adjust the estimator to account for the carcasses missed by using a rectangular plot 

size, using a similar methodology to the density-weighted proportion calculation. However, to 

my knowledge this adjustment has not been previously developed. This left 4 studies that met all 

criteria strictly.  

Studies with sufficient reporting could then be included in a modified Shoenfeld 

estimator to standardize raw bat fatality counts across space and methodologies (Figure 3a). 

However, I determined that 13 studies did not comprise a sufficient sample size, given Peters et 

 
2 https://github.com/mtango99/thesis/blob/main/results/FatalitiesStudyAudit.xlsx 

https://github.com/mtango99/thesis/blob/main/results/FatalitiesStudyAudit.xlsx
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al. (2020) states they used studies from 27 sites. I was therefore unable to reproduce this part of 

the study.  

 

Spatial Analysis and Landscape Metrics 

  Peters et al. (2020) then calculated landscape metrics using land cover, wind turbine, 

rivers/streams/artificial paths, roads, and elevation inputs (Figure 3b). They calculated these 

landscape metrics at four spatial scales using 2.5 km, 5 km, and 25 km radius buffers from a 

given site’s wind turbines, in addition to using a local spatial scale. They used ArcGIS 10.3.1 to 

calculate point and line densities as well as minimum distance metrics (ESRI 2014). I used QGIS 

3.16.4 instead as it is a free and open source software, whereas ArcGIS is proprietary. To derive 

a topographical position index (TPI) from the digital elevation model (DEM), Peters et al. (2020) 

used a SAGA tool accessed through QGIS 3.4, and in my case 3.16.4 (Conrad et al. 2015). I 

made a model that calculates these values (point density, line density, minimum distance metrics, 

TPI) one site at a time, developed using the Beech Ridge wind site in West Virginia (WV-2). I 

also made a model that preprocesses the land cover layer to aggregate based on type of land 

cover. To calculate percent area of land cover, percent land cover of ridges and valleys, forest 

core area, edge density of land cover types, mean patch size, largest patch index, aggregation 

index, clumpiness index, and Simpson’s evenness index, Peters et al. (2020) used FRAGSTATS 

4.2.1, whereas I used the R package equivalent of FRAGSTATS, ‘landscapemetrics’, in RStudio 

1.3.1056 and R version 4.0.2, creating a script that can be used by anyone (Hesselbarth et al. 

2019, McGarigal et al. 2012, R Core Team 2021, RStudio Team 2020). See Figure 3b and the 

landscape metrics R script3 for more information on these landscape statistics. For more specifics 

on the model, see Appendix A, where I included detailed documentation and instructions about 

how to use the models and code together. 

According to the Natural Earth 1:10m physical vector lakes layer, the Beech Ridge (WV-

2) site I used to develop this model does not have any lakes within 25 km (Natural Earth 2021). 

Therefore, to test the model, I created a vector layer of arbitrary polygons to represent lakes, both 

large (>500 m2) and small (<500 m2), in the region. However, I was unable to retain the small 

lakes when rasterizing the layer to a 30x30m raster grid. It is unclear how Peters et al. (2020) 

retained lakes smaller than their reported cell size.  

 
3 https://github.com/mtango99/thesis/blob/main/procedure/code/Thesis_R2.R 

https://github.com/mtango99/thesis/blob/main/procedure/code/Thesis_R2.R
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Due to uncertainty in Peters et al. (2020)’s reporting of how they incorporated small lakes 

in their analysis, the QGIS model I developed operates using 6 land cover classes (wetland, 

cropland, urban, water, forest, open cover), as opposed to 7 in the Peters et al. (2020) study, 

where water was split into two classes: large lakes and small lakes.  

Due to uncertainty in what the NHD data itself represents, there may be differences 

between the stream and river layer I used and the layer Peters et al. (2020) used due to the 

potential lack of artificial paths in the layer I used. Artificial paths are defined as “a surrogate for 

general flow direction in NHDWaterbodies and NHDAreas,” which is “used to complete the 

stream network through NHDWaterbodies and NHDAreas where there is no obvious channel” 

(NHD, n.d., USGS, n.d. [a]). They are “single line features that represent the approximate center 

line for all double banked streams and closed water bodies that either fall on a streamline, or 

closed water bodies that are the origin source of a flow path” (IGWS 2019). Artificial paths 

allow for a full stream network and contain information about flow direction. Peters et al. (2020) 

state that they created a streams and rivers layer “by merging all ‘StreamRiver’ NHDFlowlines 

with all ‘ArtificialPath’ NHDFlowlines that spatially intersected ‘StreamRiver’ NHDAreas” 

(Peters et al. 2020, 26). However, when I downloaded the National Hydrography Dataset (NHD) 

data, there was only one NHDFlowlines layer, which was not differentiated between artificial 

paths and streams/rivers. On one page of the USGS website, it states that NHDFlowline layers 

already contain both stream/river and artificial path vector features (USGS, n.d. [b]); however, 

on another page, only “StreamRivers” NHDAreas are mentioned (not NHDFlowline) as layers 

that contain artificial paths (NHD, n.d.). Therefore, there may be differences between my 

river/stream data and those used by Peters et al. (2020), but my assumption is that the 

NHDFlowline layers I used do contain artificial paths.  

Due to the uncertainty in the temporal characteristics of the Peters et al. (2020) study, 

there may be differences in the data I used for the replication study. I was unable to use the exact 

data as Peters et al. (2020) due to lack of availability of data from the same year as they used, 

and due to a lack of reporting by Peters et al. (2020) specifying which year they used. Peters et 

al. (2020) did not specify which year the NHD nor TIGER data were from, adding uncertainty in 

their data and making it difficult to compare results. I used NHD data from September 1, 2020 

and TIGER data from 2018. For the NALCMS data, I used data from 2015 instead of 2010. For 

the USGS wind turbines, I used data from July 2020, though the data used by Peters et al. (2020) 
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were from 2019. For the 3DEP layers, Peters et al. (2020) used data from 2017. I downloaded 

3DEP files from ScienceBase on October 1, 2020, but the links to metadata have since broken so 

it is unclear when the data were last updated. For more information on metadata, visit the data 

folder4 in my GitHub repository.  

Peters et al. (2020) report that they used spatial joins to calculate minimum distance 

metrics. Instead of using spatial joins, I created proximity rasters to calculate minimum distances 

from land class types. To calculate turbines’ distance to rivers/streams, I created a proximity 

raster where each pixel stored distance from rivers/streams (Figure 4). To calculate turbines from 

NALCMS land cover types, I created a proximity raster where each pixel stored distance from 

rasterized turbines, (Figure 5). I used the local buffer around the turbines to calculate the 

minimum distance to the turbine of a nearby facility.  

 
 
  

 
4 https://github.com/mtango99/thesis/tree/main/data 

https://github.com/mtango99/thesis/tree/main/data
https://github.com/mtango99/thesis/tree/main/data
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Figure 4. Example of a proximity map from flowlines. Colors range from black being closest to 
white being farthest from flowlines (red). Each pixel in the proximity map raster shows distance 
from nearest flowline pixel. This comes from the WV-2 site.  
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Figure 5. Example of a proximity map from turbines. Each pixel in the proximity map raster 
shows distance from nearest turbine pixel, with black being closest to the turbines and white 
being farthest away. This comes from the WV-2 site.  
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Statistical Analysis to Determine Fatality Risk 

Peters et al. (2020) then case weighted the studies to decrease spatial dependence, where 

there were multiple studies done at the same site or where sites were within 50 kilometers of 

each other, and thus the landscape metric analyses at the 25-kilometer buffer scale overlapped. 

They did not account for spatial dependence between sites that were more than 50 kilometers 

apart, although it would have been useful to take into account the effect of distance and spatial 

heterogeneity on the variation of landscape metrics (Wagner & Fortin 2005).  

Peters et al. (2020) then ran a random forests analysis in R but did not provide the code. 

Because of the low sample size in my data due to having access to such few bat fatality studies 

that proved suitable for incorporation in a meta-analysis, I did not use my own data to run the 

random forests analysis and generalized linear model. However, I provide an R script created by 

Professor David Allen to run the random forests analysis (using the ‘randomForest’ package) and 

a generalized linear regression with variable ranking using Akaike’s information criterion 

adjusted for small sample size (AICc; using the ‘MuMIn’ package) on simulated data (Barton 

2020, Liaw & Wiener 2002). This code can be referenced for when more bat fatality data 

become available. 

The code does not completely reproduce the methods of Peters et al. (2020) in that it does 

not include the case weighting due to their lack of reporting on how they incorporated case-

weighted data in their random forest analysis. Peters et al. (2020) also used the ‘glmulti’ package 

in addition to the ‘MuMIn’ package in R, whereas I incorporated only the ‘MuMIn’ package in R 

script because I was able to perform the calculations without the ‘glmulti’ package (Barton 2020, 

Calcagno 2019).  

Models and code can be found on GitHub here.5  

 
 

  

 
5 https://github.com/mtango99/thesis/tree/main/procedure/code 

https://github.com/mtango99/thesis/tree/main/procedure/code
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Results 

 The results of this study include the gaps in reporting of the individual bat fatality studies 

used in the study. I focus on gaps in information necessary for raw bat fatality counts to be 

converted to total estimated bat fatalities, including raw carcass counts, carcass persistence, 

searcher efficiency, plot radius, and average interval between searches. I find that only 4 studies 

of the original 32 studies that I downloaded from the AWWIC database can be included in 

modified Shoenfeld estimator without making any assumptions or estimations. With assumptions 

or estimations about plot radius, 13 studies can be used to calculate total estimated bat fatality. 

 I then present the results of my reproduction of the methods of Peters et al. (2020), 

identifying which aspects I was and was not able to reproduce based on the reporting of Peters et 

al. (2020) and the availability of data. For a visual example of the landscape metrics used in the 

study, I report the calculated landscape metrics at the Beech Ridge (WV-2) site I used to develop 

my model of Peters et al. (2020)’s methods.  

 

Bat fatality study reporting 

Of the 32 papers I downloaded from the AWWIC database, I first retained 26 papers at 

19 wind facilities to enter into QGIS because one study was not publicly accessible (NA-4), one 

site was not in the USGS Wind Turbine Database (presumably it was never built) (NA-2), one 

study was a duplicate of another (WV-3a & NA-12), one study was focused on Pennsylvania in 

general (NA-5), one was a manual, not a study (NA-6) one was a study plan for a project that 

didn’t end up getting built (NA-7) (Table 2).   

Four of these remaining 26 papers did not have bat fatality data (NA-1, NA-8, NA-9, NA-

10), and two only provided fatality estimates (using a “modified estimation method from 

Shoenfeld (2004) and Erickson et al. (2003)”, and for NA-11 the estimation method was 

Erickson et al. (2004)) (NA-3, NA-11). This left 20 papers with proper carcass data.  

Of these 20, one did not report carcass persistence and searcher efficiency (necessary for 

the Shoenfeld estimator) (NJ-1), and one combined bird and bat data for searcher efficiency and 

may have also combined for carcass persistence (DE-1).  

Of the remaining 18, sixteen studies did not report a usable search area radius (one did 

not report (ME-1)), some reported a range (DE-1, WV-1a, WV-1b, MD-1a, MD-1b, ME-1, WV-

3a, WV-3b), and some reported rectangular plots (NY-1a, NY-1b, PA-1, ME-2, NY-2, NY-3, 
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VT-1). Six of these studies also included dates outside of July 15-October 15 and did not provide 

enough information to split data into sub-dates (PA-1, DE-1, WV-1a, WV-1b, NY-1a, NY-1b). 

Although all but one (NJ-1) provided an average interval between searches, many studies had a 

mixture of daily and weekly searches which presumably would require weighting for non-

independence.  

This left 4 studies at 3 sites with enough data to confidently calculate a modified 

Shoenfeld Estimate, and an additional 9 studies at 7 sites with enough data after assumptions and 

estimations (Table 2).  

 Peters et al. (2020) stated that they made assumptions and approximations when 

including fatality studies in the modified Shoenfeld estimator, which is likely why they were able 

to include more studies in their analysis. However, Kimberly Peters, the lead author of the paper, 

did not respond to inquiries about what specific assumptions and approximations they made.  
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Table 2. Relevant gaps in bat fatality study reporting. Studies without bat fatality data 
(Reference: NA-1-12) were not included in the table. Red indicates data reporting gaps; light 
orange indicates an assumption or estimation is necessary. See Appendix B for citations of the 
papers to which the reference codes refer, including NA-XX studies. Turbine heights are 
available from the USGS Turbine Database, so it did not matter if they were reported in the 
studies.  
 
 
  

Reference
Carcass 

persistence
Searcher 
efficiency  Plot radius 

Average interval 
between 
searches

Data available for 
July-October date 

range?
NJ-1 N N N N Y
DE-1 U C U Y N

NY-1a Y Y R Y N
NY-1b Y Y R Y N
PA-1 Y Y R Y N

WV-1a Y Y U Y N
WV-1b Y Y U Y N
MD-1a Y Y U Y Y
MD-1b Y Y U Y Y
ME-1 Y Y U Y Y
ME-2 Y Y R Y Y
NY-2 Y Y R Y Y
NY-3 Y Y R Y Y
VT-1 Y Y R Y Y

WV-3a Y Y U Y Y
WV-3b Y Y U Y Y
ME-3a Y Y Y Y Y
ME-3b Y Y Y Y Y
ME-4 Y Y Y Y Y
WV-2 Y Y Y Y Y

U = unclear if 
combined birds 

& bats or just 
bats

C = combined 
bats and birds

R = rectangle plot
N = none

U = 
unclear/range
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Reproducibility of landscape metrics & statistical analyses 

I was successfully able to create models and R scripts that together mostly reproduce 

Peters et al. (2020)’s calculations of landscape metrics and statistical analyses to identify a 

correlation between land cover and bat fatalities. However, I could not apply these to the study 

sites I found through the AWWIC database, because too few fatality studies provided enough 

information to standardize fatalities using the modified Shoenfeld estimator. This means that I 

am unable to check to see if my results are the same. In addition to not having access to enough 

data to run the statistical analysis, I was not able to fully reproduce the methods of the statistical 

analysis due lack of information about how Peters et al. (2020) incorporated weighted studies 

into their random forests analysis and generalized linear regression.  

While I was unable to calculate fatality risk by site due to the lack of information reported 

for inclusion in the modified Shoenfeld estimator, I was able to calculate landscape statistics and 

did so at the Beech Ridge (WV-2) site. This required downloading data layers from a variety of 

sources (Figure 3b). Peters et al. (2020) did not provide original data layers, so I found data on 

my own based on the information provided in their report. Some data were not available for 

download in the year used by Peters et al. (2020), so I substituted with different years (3DEP, 

NALCMS, and USGS Wind Turbines). For a few layers, Peters et al. (2020) did not specify 

which date they were from, so I used the most recent available data available (NHD and TIGER).  

Although I could have used the general linear model coefficients reported by Peters et al. 

(2020) to assess bat fatality risk based on landscape metrics, some landscape metric variables 

would have required a transformation dependent on data from all other sites (Equation 2). This 

transformation applies to 9 of the variables (Table A1). Therefore, using these coefficients would 

have required downloading layers for and running the landscape metrics model on each site, and 

renders Peters et al. (2020)’s methods less accessible for those interested only in bat fatality risk 

at a particular site. Moreover, Peters et al. (2020) did not publish which specific sites they used, 

so their regression coefficients may not be accurate for the data sample I have access to.  

 

         Equation 2. Transformation necessary for 9 variables (Table A1), from Peters et al. (2020). 

𝑋𝑋′ = log (𝑋𝑋 − (min(𝑋𝑋) − 1)) 
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I used QGIS and R to create the models and scripts because ArcGIS is a proprietary 

software and FRAGSTATS is less accessible than R. I also departed from Peters et al. (2020)’s 

methods by not including small lakes (<500 m2) because Peters et al. (2020) did not specify how 

they included lakes smaller than their raster unit (30x30m). Moreover, because Peters et al. 

(2020) did not report how spatial joins would calculate minimum distance metrics, I used 

proximity rasters instead.  

 

Report analyzing landscape metrics at 25 km buffer for Beech Ridge (WV-2) site 

This is an example of the metrics outputted by using the models and landscape metrics R 

script when run at a 25 km spatial scale at the Beech Ridge (WV-2) site. Descriptions of metrics 

can be found in Table 3 and Table 4.  

This region is mostly forest (76.5%) with some open cover (9.88%) and cropland (8.47%) 

(Figure 6, Table 3, Table 4). Edge density, mean patch size, and largest patch index are highest 

for the forest class, as a high abundance forest cover means many edges and large patches (Table 

4). All positive clumpiness indices show that patches tend to be aggregated, with cropland and 

wetland having the highest aggregation and urban areas with the lowest aggregation (this is 

likely because roads are classified as urban areas) (Table 3). This is also supported by the 

aggregation index for the region as a whole being 90.4 out of 100, showing close to maximum 

aggregation (Table 4). According to the Simpson’s evenness index, the landscape is neither 

homogenous nor heterogeneous given on a scale from 0 to 1 the measure was 0.476 (Table 4). 

The forest core area was relatively low at 65.5%, supporting the relative clumpiness of the forest 

cover (Table 3, Table 4). Ridges and valleys are fairly evenly split, with ridges being 7.7% of the 

landscape and valleys being 8.34% of the landscape (Table 4).  
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Figure 6. Land cover within 25 km buffer of wind turbines at Beech Ridge, WV site (WV-2), 
aggregated from original NALCMS layer.  
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14- wetland 15- cropland 17- urban 20- forest 

(1,5,6) 
21- open 
cover 
(8,10,16) 

% area (proportional 
abundance of land cover 
classes): lsm_c_pland 

0.806 8.47 3.98 76.5 9.88 

Edge density (sum of all 
edge segments in patch 
type & divide by 
landscape area): lsm_c_ed 

2.07 18 23.5 55.3 25.6 

Mean patch size (average 
total area in particular 
class): lsm_c_area_mn 

5.17 11.7 6.71 151 6.58 

Largest patch index (% 
landscape occupied by 
largest patch of a given 
class): lsm_c_lpi 

0.418 1.69 0.301 74.8 0.388 

Clumpiness index 
(adjacency of patches.  -1 
= disaggregated,  0 = 
random, 1 = aggregated): 
lsm_c_clumpy 

0.807 0.825 0.533 0.768 0.782 

 
Table 3. Landscape metrics by land cover class at a 25 km buffer from the WV-2 site.  
Landscape metrics were calculated using the ‘landscapemetrics’ R package (Hesselbarth et al. 2019).  
 
 
Aggregation index (describes adjacency of habitat cells: 0 
= maximally disaggregated, 100 = maximally aggregated 
classes): lsm_l_ai 

90.4 

Simpson's evenness index (evenness of proportions of land 
cover; homogeneity measure: 
"Equals SIEI = 0 when only one patch is present and 
approaches SIEI = 1 when the number of class types 
increases while the proportions are equally distributed" 
[source: R help documentation]): lsm_l_siei 

0.476 

Forest core area % (core area 
percentage of landscape; edge depth 
was 1.3114):  
lsm_c_cpland 

0 (not forested) 13.9 

1 (forested) 65.5 

TPI % area (percentage of landscape 
of class): lsm_c_pland 

Valleys (<-1) 8.34 
Neither (-1:1) 84 
Ridges (>1) 7.7 

 
Table 4. Landscape metrics of the landscape area at a 25 km buffer from the WV-2 site.  
Landscape metrics were calculated using the ‘landscapemetrics’ R package (Hesselbarth et al. 2019).   
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Discussion 

 Based on my results, I suggest recommendations for future bat fatality studies to ensure 

full reporting so data can be included in a fatality estimator. I identify ways Peters et al. (2020) 

could have made their study more reproducible. I discuss the ways in which lack of reporting in 

Peters et al. (2020) and fatality studies, and gaps in access to a representative sample of fatality 

studies, can introduce uncertainty in results. I contextualize this fatality study availability 

politically and legally. The political and legal contexts to fatality study availability are also 

discussed. I then discuss the merits of my reproduction for reproducibility in geography, future 

spatial studies that use landscape metrics, wind turbine siting, and as an integrative study 

between geography and biology.  

 

Bat fatality studies 

Study Report Recommendations 

 Only 13 studies of the original 20 with reported carcass data reported data in a way in 

which it was possible to include in a meta-analysis using a modified Shoenfeld estimator. 9 of 

these 13 studies required estimations and assumptions; only 4 studies could be included without 

any estimations or assumptions. There is therefore clearly an opportunity for improvement in the 

way that data are reported.  

 Most importantly, raw data should be included in reports with the dates of searches 

included so that estimates can be calculated for particular times of the year. In this meta-analysis, 

only studies from July 15-October 15 were included as it is the fall migratory period where bat 

fatalities are highest. Some studies did not include raw data making it impossible to sort out 

fatalities by date.  

 This also means that search plots should be circular, which was not always the case 

among the AWWIC studies included in this analysis. It is unclear to what extent differences in 

plot shape affect estimator calculations, but regardless, consistency would increase accuracy. 

Another improvement for field study methodology would be establishing a consistent temporal 

interval between searches, which many studies did do but some did not. This would help 

decrease confidence intervals around fatality estimates.  

 Carcass persistence should be calculated for bats, as opposed to combined with bats and 

birds; in one study, this was not clearly defined (DE-1). The methodologies for carcass 
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persistence and searcher efficiency trials also varied, adding uncertainty to the total estimated 

fatalities; trials used carcasses ranging from freshly killed bats (PA-1) to frozen bird carcasses 

(DE-1) to brown mouse and juvenile quail carcasses (WV-1b).  

Additionally, with wind turbines increasing in size, fatality surveys will also need to 

adjust protocols by increasing study plot areas to accommodate greater fall distances (Choi et al. 

2020). GenEst’s user guide lists input files as searcher efficiency, carcass persistence, search 

schedule, density weighted proportion, and observed fatalities, so it seems like new variables 

have not been introduced but likely will in the future (Simonis et al. 2018).  

The wind energy guidelines (WEGs) describe in detail the protocol for conducting post-

construction fatality studies, but do not give a straightforward way to report results (Tier IV; 

USFWS 2012). It would be helpful to have all the information necessary to calculate the 

modified Shoenfeld estimate on one page to decrease the amount of time it takes to calculate the 

estimate. This information includes number of fatalities observed, average time of carcass 

persistence in days, proportion of carcasses found by searchers, average interval between 

searches in days, and search plot radius which was used to calculate the density-weighted 

proportion (dwp) of carcasses that were available for detection during searches using radius 

using Peters et al. (2020)’s own internal metric.  

 

AWWIC Study Representation 

 Another source of bias is that likely studies in the AWWIC database do not accurately 

represent fatalities as they are contingent on operators releasing data; this could either mean an 

overestimation given high-risk facilities are more likely to be forced to release data for 

permitting reasons, or an underestimate given facilities with more fatalities will likely be more 

hesitant to publish their data (Peters et al. 2020). This also leads to an inaccurate representation 

of the spatial distribution of wind turbines (Figure 1).  

 

Fatality Estimators 

 This study used the modified Shoenfeld estimator as a comparison tool, rather than for 

the purpose of quantifying bat fatality estimates themselves (Peters et al. 2020). However, the 

Shoenfeld estimator is not consistent in its bias (Huso 2021, personal communication). While we 

do know that the Shoenfeld estimator underestimates more with low searcher efficiency and 
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when carcass removal is not constant, it is difficult to know by how much the estimator will 

underestimate total fatalities (Huso 2021, personal communication). Therefore, even as a 

comparison tool it may not be as useful as Peters et al. (2020) suggest (Huso 2021, personal 

communication).  

Newer and more accurate estimators like GenEst could allow for a greater insight into bat 

risk patterns. More accurate measures of uncertainty for detection probability could also be 

calculated using GenEst or using parametric bootstrapping, which was not possible for the Peters 

et al. (2020) study due to data limitations (Madsen et al. 2019, Peters et al. 2020). Therefore, it is 

important that post-construction fatality monitoring studies are written with more transparency 

and detail, including ground cover conditions and carcass persistence distribution (Simonis et al. 

2018).  

 

Data privatization 

The largest barrier to using non-academic reports in studies is data privatization. Unless 

endangerment or permitting laws require data to be published, post-construction fatality study 

data are owned by turbine operators and only released at their discretion (Hale 2020, personal 

communication).  

While the hoary bat, eastern red bat, and silver-haired bat (migratory tree bats) are not 

listed as endangered, white-nose syndrome has led to endangerment for many cave-dwelling 

bats. The Indiana bat and the Virginia big-eared bat are federally listed as endangered, and the 

northern long-eared bat is federally listed as threatened (ECOS 2021). Vermont has also listed 

the little brown bat, northern long-eared bat, small-footed bat, and tricolored bat (cave-dwelling 

bats) as endangered (VT FWS, n.d., Williams 2006). While cave-dwelling bats are at less risk of 

wind turbine collisions, they are still sometimes found during fatality studies (e.g., a few little 

brown bats at PA-1). Even if not many endangered bats are killed, even a few may deter wind 

turbine operators from releasing data. Numbers of cave-dwelling bat fatalities may therefore be 

even more suppressed than currently thought. Despite the fear of litigation for having 

accidentally killed birds or bats, in recent years operators have been more open to sharing data 

for research purposes as a path to finding solutions to the bat collision problem (Hale 2020, 

personal communication). Finding solutions now will then help prevent the burden of 
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endangerment regulations long-term and help ensure the expansion of wind energy (Hale 2020, 

personal communication).  

The AWWIC database is the most centralized, accessible resource for bat fatality data 

and has created more incentive to release data. There are, however, still a lot of data sitting in 

boxes (Hale 2020, personal communication), in addition to data owners forgetting to add their 

data to the database or not knowing the database exists. Additionally, lawyers are frequently 

involved in data sharing negotiations to protect operators from liability (Diffendorfer 2020). 

However, when there are critical species to protect, there is more motivation to release data, such 

as recently in the case of the California condor when diverse stakeholders rallied around 

protecting the species (Diffendorfer 2020). On the other hand, the fear of future regulation of 

operations due to species endangerment can encourage preventative measures that may include 

releasing data for research. Some states have policies that require wind turbine operators to 

release data, including Vermont. Upon request, and with lawyers to help negotiate, operators 

may also release data to researchers, as did the operators involved in the NDA for the Peters et 

al. (2020) study.  

I reached out to Ian Evans, one of the co-authors of the Peters et al. (2020) study, who 

said that there is a non-disclosure agreement between DNV GL (the consulting firm that did the 

meta-analysis) and the owners of the data (owners of the wind turbines) on the data they used for 

the meta-analysis (Evans 2020, personal communication). Because Peters et al. (2020) did not 

report which specific studies they used, the studies that I used in my analysis for Region 5 are 

likely different from those used by Peters et al. (2020).   

This NDA and the hesitancy of wind operators to release their post-construction fatality 

monitoring studies are understandable as voluntarily admitting to having killed bats or birds can 

be risky. However, this barrier to knowledge about bat risk is only slowing down solutions by 

adding uncertainty to data and making it very difficult to quantify the problem.  
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Recommendations for Peters et al. (2020) study 

Fatality Studies 

 In addition to improvements on post-construction fatality monitoring studies themselves, 

the Peters et al. (2020) meta-analysis could also have benefitted from transparency, particularly 

in how the data prepared. Examples include explanations for how rectangular study plots were 

treated when calculating radii, if fatality summary statistics over larger time frames than the July 

to October focus period were used, and how studies with multiple search frequencies or forms 

(with and without dogs) were treated. It would have been helpful for reproducibility purposes to 

include a raw data file or data sources, or even just the names of the studies they used, though 

this was protected under the non-disclosure agreement. It would have also been helpful if they 

had included code and/or a model with all of their analytical steps. Descriptive statistics of all 

variables for each site would have been useful as well, to both compare my results to and be able 

to calculate fatality risk at one site without having to calculate landscape metrics for all sites. 

Even a visualization of their results, such as a bat fatality risk map, would be helpful to compare 

results in future reproductions when bat fatality data are more available.  

There is a fairly large discrepancy between the number of studies I could successfully 

incorporate into a meta-analysis following the criteria necessary (13 studies with flexible criteria) 

and those that Peters et al. (2020) used (27 sites, so at least that many studies; they did not report 

how many individual Region 5 studies they used). This discrepancy may partially have to do 

with the fact that they also used studies from outside the AWWIC database, but it likely does not 

account for all 14+ studies I do not have. The 17 studies they used from outside the AWWIC 

database were split between Regions 3 and 5, so it is likely I am missing at least a few studies 

from within the AWWIC database that they did use. The fact that Peters et al. (2020) primarily 

used the AWWIC database meant I could have some confidence that I used similar studies to 

theirs, but there is no way of knowing how closely my dataset matched with theirs. It would also 

make reporting which studies researchers used easier if the AWWIC database were to create a 

straightforward cataloguing system so that each study had a unique identifier, perhaps similar to 

the way I labelled them for myself (Appendix B).  
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Landscape Metrics & Statistical Analyses 

It is difficult to know how differences in methodology and software affected the results 

because I cannot compare my results to Peters et al. (2020). Peters et al. (2020) did not report 

which specific ArcGIS tools they used, and even if they did, tools may differ between ArcGIS 

and QGIS and it is difficult to know in what ways because ArcGIS tools are not open source.  

I do not think that using proximity rasters instead of spatial joins to calculate minimum 

distance metrics would have meaningfully affected the results, though there may have been slight 

differences due to the way values were calculated as a result of using rasters at a 30m scale 

instead of vectors. Although lakes were not present at the site I studied (WV-2), the removal of 

small lakes from the analysis due to raster resolution may affect results at other sites.  

Peters et al. (2020) did not provide full information about the land cover layers they used, 

so I am not confident I used the same data. In future studies, original datasets, or at least full 

reporting on their metadata so researchers can download the datasets from the source themselves, 

should be provided.  

 Because Peters et al. (2020) did not report how they incorporated case-weighted data into 

the random forests analysis, I did not case-weight data and there would therefore likely be 

differences in results given the same original data as well. Peters et al. (2020) neither provided a 

model for calculating landscape metrics, nor code for calculating the random forests analysis or 

generalized linear model, so my methods may differ.  

 

Applications of reproduction 

The models and R scripts I created can be used in the future to complete the reproduction 

of the Peters et al. (2020) study in the future, as I was unable to calculate fatality risk per turbine 

site due to the lack of data available. They will be most useful when fatality estimators become 

more consistent and comparable, when fatality studies are more available, and when more 

fatality studies report fully enough to be included in a meta-analysis normalizing raw fatality 

data using an estimator.  

My work also creates an example case for how others may want to reproduce or replicate 

other studies in a way that is itself reproducible, and it provides methods useful for similar 

studies. Namely, I provided a detailed record of my methods via written explanations, in addition 
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to the models and scripts themselves, which I made publicly available on GitHub6 for others to 

learn from, use, and edit, both within and outside the context of bat fatalities at wind turbines. 

These contexts can be very different, given the methods use a dependent variable at points and 

independent variables across space. For example, with a way to standardize public observations 

(e.g., iNaturalist or eBird data using a standardizing estimator), populations could be analyzed 

for correlation with land cover, urbanization, or state boundaries.  

 

Applications for bats: wind turbine siting 

Given the number of variables one must consider when siting to build new wind turbines 

(e.g., favorable wind patterns, low environmental impacts, public acceptance, radar 

considerations, transmission line access, cost, military airspace, wildlife habitat, and of course, 

bird and bat fatality risk) and the shrinking ideal space that meet these criteria, siting by bat risk 

may not even be possible at this point (Lantz 2020, Renz 2020, Rodman & Meentemeyer 2006). 

Future studies should include other important variables, such as known migration patterns, sex of 

bats, water pollution, weather conditions, into bat fatality analyses.  

However, many researchers now agree that bats are everywhere and that they are perhaps 

even attracted to wind turbines, making it difficult use siting alone as a sufficient mitigation 

measure (Amanda Hale 2020, Dowling 2020). Researchers are beginning to assume bats will 

always be at risk, particularly given the scale at which wind developers are planning to build-out 

to slow the effects of climate change, and are focusing on bat deterrents at wind sites, as opposed 

to trying to build away from bat habitat (Peterson 2020).  

Nevertheless, if strong correlations between landscape factors and bat risk were to be 

found, it would be an important factor to consider to influence siting, as well as being prepared 

with curtailment and deterrence methods in place to mitigate bat risk (Dowling 2020, personal 

communication). Therefore, gaining a better understanding of the methodology behind this meta-

analysis is useful for both its results and also to improve future meta-analyses, which could then 

help target sites where mitigation efforts are most needed. Knowledge about bat population 

impacts could also increase pressure and therefore funding for research on the efficacy of 

mitigation methods including curtailment (i.e., stopping blades during high-risk times or 

increasing cut-in speeds), acoustic and visual deterrents, and possible new methods.  

 
6 https://github.com/mtango99/thesis 

https://github.com/mtango99/thesis
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While wind-wildlife scientists have accepted bat risk as a reality and problem to fix (even 

if quantifying it is uncertain), decision-makers often need more of a reason to focus on solutions 

rather than the scientific uncertainty that can often undermine action in the political sphere. 

Estimation standardization will prove important to quantify and communicate the scale of bat 

risk to decision-makers as it increases with the wind infrastructure build-out. 

Even though the three migratory bats (eastern red bat, hoary bat, and silver-haired bat) 

studied in this paper are not currently listed as endangered, it is important to study them as much 

as possible to prevent from being listed. Moreover, once listed, there are many regulations and 

red tape which can make it difficult to study the particular species and would also slow down 

necessary build-out of wind energy.   

At the same time, federal regulation of wind energy development could promote research 

if written with such a purpose. Regulation could also require the use of curtailment or deterrence 

methods, which would not otherwise be economically favorable, in areas with high bat fatality 

risk.  

 

Geography and ecology integration 

 The interplay between geography and biology in this study allows the knowledge from 

the two fields, often seen as completely separate frameworks of understanding, to create a more 

valuable, holistic understanding of the ways geographic tools can inform species conservation. 

Geographic tools, when used properly, can give great insight into phenomena over space, and 

ecological theory is necessary to guide an analysis by using relevant variables. Understanding 

both fields’ contexts and relevance can decrease uncertainty in analyses by ensuring construct 

validity.  
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Conclusion 

 This study attempted to reproduce a meta-analysis to identify reporting gaps in both the 

meta-analysis itself and the studies from which it took its data. I found that variations in post-

construction fatality study methods and reporting made inclusion in a meta-analysis difficult to 

achieve, particularly without specific guidance about how the study treated the studies from 

which it extracted raw bat fatality data. However, with greater transparency, reporting 

improvements, and more interactions between researchers (i.e., responding to inquiries about 

methods), analyses like these could provide a powerful tool to study not just bat fatality risk, but 

any other question that requires the standardization of a dependent variable and correlation with 

spatial variables. With more collaboration among data owners, more accurate meta-analyses 

could also explore collision risk to birds or target particular areas to focus deterrence 

mechanisms. Moreover, a more accurate estimation of fatalities could help push for funding and 

necessary legislation to continue wind-wildlife research and prevent extinctions as wind energy 

development expands.  

 The QGIS models and R scripts that I made reproduce the Peters et al. (2020) methods 

the most accurately possible given the information provided in the study. These methods are 

available to the public on GitHub7 and only require free and open source software (QGIS and R) 

to run. They can be used to reproduce my work or be applied to another context. The consistency 

and transparency of these methods should be standard and required for future geographic studies 

as it allows for more confidence in methods and makes knowledge acquisition more efficient, 

helping the field along as a whole in an age when time is not on our side.  

 
7 https://github.com/mtango99/thesis 

https://github.com/mtango99/thesis
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Appendices 
 
Appendix A: Model info sheet 
(https://github.com/mtango99/thesis/blob/main/procedure/protocols/Model_InfoSheet.pdf): here 
you’ll find more detailed explanations of the models and R scripts.  
 
 
Appendix B: Study citations and code names   
 
Study citations and code names, non-NA studies ordered in consonance with Table 2. Reference 
code with “NA” means there was no bat fatality data in the study. All other reference codes use 
state abbreviation. If there is a lowercase letter it means there are multiple studies at the same 
location, e.g., ME-3a and ME-3b are two studies at the same location in Maine. 
 
 
Table B1: Study citations and code names  
 
Citation Reference 
The Louis Berger Group, Inc. and Richard H. Podolsky. "Pre and Post-
construction Avian Survey, Monitoring, and Mitigation at the Lempster, New 
Hampshire Wind 
Power Project." Prepared for Lempster Wind, LLC and Community Energy, 
Inc. August 2006.  

NA-1 

Anderson, K.W. "A Study of the Potential Effects of a Small Wind Turbine on 
Bird and Bat Mortality at Tom Ridge Environmental Center, Erie, 
Pennsylvania." December 2008.  

NA-2 

Efromyson, R.A., R.J. Day, & M.D. Strickland. "A Retrospective Tiered 
Environmental Assessment of the Mount Storm Wind Energy Facility, West 
Virginia, USA." November 2012.  

NA-3 

Reynolds, D.S. "Monitoring the Potential Impact of a Wind Development Site 
on Bats in the Northeast." Journal of Wildlife Managemnet 70:1219-1227.  
<http://dx.doi.org/10.2193/0022-541X(2006)70[1219:MTPIOA]2.0.CO;2> 

NA-4 

Mumma, T.L. & W. Capouillez. "Pennsylvania Game Commission Wind 
Energy Voluntary Cooperation Agreement: Second Summary Report." March 
2011.  

NA-5 

NJ Department of Environmental Projection. "Technical Manual for 
Evaluating Wildlife Impacts of Wind Turbines Requiring Coastal Permits." 
September 2010.  

NA-6 

Stantec Consulting Services, Inc. "Study Plan for Post-Construction 
Monitoring Surveys: Wild Meadows Wind Project, Grafton and Merrimac 
Counties, New Hampshire." Prepared for Atlantic Wind, LLC. October 2013.  

NA-7 

Stantec Consulting Services, Inc. "2009 Spring, Summer, and Fall Avian and 
Bat Surveys for the Groton Wind Project in Groton, New Hampshire." 
Prepared for Groton Wind, LLC. December 2009  

NA-8 

https://github.com/mtango99/thesis/blob/main/procedure/protocols/Model_InfoSheet.pdf
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Stantec Consulting Services, Inc. "Bird and Bat Pre-Construction Surveys for 
Kingdom Community Wind Project in Lowell, Vermont." Prepared for Green 
Mountain Power. January 2010.  

NA-9 

Tidhar, D. & A. Merrill [Western EcoSystems Technology, Inc.]. "Study Plan 
for Post-construction Fatality Monitoring and Bat Acoustic Monitoring for the 
Colebrook Wind Resource Area, Litchfield County, Connecticut." Prepared 
for BNE Energy, Inc. August 2011.  

NA-10 

Taucher, J., T.L. Mumma, & W. Capouillez. "Pennsylvania Game 
Commission Wind Energy Voluntary Cooperation Agreement: Third 
Summary Report." December 2012.  

NA-11 

Young, D.P., S. Nomani, W.L. Tidhar, & K. Bay [Western EcoSystems 
Technology, Inc.]. "NedPower Mount Storm Wind Energy Facility Post-
Construction Avian and Bat Monitoring." Prepared for NedPower Mount 
Storm, LLC. February 2011. 

NA-12 

New Jersey Audubon Society Center for Research and Education. "Post-
construction Wildlife Monitoring at the Atlantic County Utilities Authority- 
Jersey Atlantic Wind Power Facility." Prepared for New Jersey Board of 
Public Utilities Clean Energy Program. December 2008. 

NJ-1 

Buler, J., K. Horton, & G. Shriver. "Post-Construction Avian and Bat Impact 
Assessment of the University of Delaware Wind Turbine in Lewes, DE: 
Interim Report." 2012.  

DE-1 

Stantec Consulting Services, Inc. "2013 Bird and Bat Post-Construction 
Monitoring Report: Report for Laurel Mountain Wind Energy Project in 
Randolph and Barbour Counties, West Virginia." Prepared for AES Laurel 
Mountain Wind, LLC. January 2014. 

WV-1a 

Stantec Consulting Services, Inc. "2014 Bird and Bat Post-Construction 
Monitoring Report-- Laurel Mountain Wind Energy Project, Randolph and 
Barbour Counties, West Virginia." Prepared for AES Laurel Mountain Wind, 
LLC. January 2015. 

WV-1b 

Jain, A., P. Kerlinger, R. Curry, & L. Slobodnik (Curry and Kerlinger, LLC). 
"Annual Report for the Maple Ridge Wind Power Project Postconstruction 
Bird and Bat Fatality Study- 2006." Prepared for PPM Energy, Horizon 
Energy & Technical Advisory Committee (TAC) for the Maple Ridge Project 
Study. June 2007.  

NY-1a 

Jain, A., P. Kerlinger, R. Curry, & M. Lehman. "Annual Report for the Maple 
Ridge Wind Power Project Postconstruction Bird and Bat Fatality Study- 
2008." Prepared for Iberdrola Renewables, Inc., Horizon Energy, & Technical 
Advisory Committee. May 2009.  

NY-1b 

Arnett, E.B., M.R. Schirmacher, M.M.P. Huso, & J.P. Hayes. "Patterns of Bat 
Fatality at the Casselman Wind Project in South-Central Pennsylvania." 
Prepared for the Bats and Wind Energy Cooperative and the Pennsylvania 
Game Commission. June 2009.  

PA-1 

Tetra Tech. "Spruce Mountain Wind Project: Post-Construction Bird and Bat 
Fatality and Raptor Monitoring- Year 1 Annual Report." Prepared for Patriot 
Renewables and Spruce Mountain Wind. May 2013.  

ME-2 
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Stantec Consulting Services, Inc. "Post-construction Monitoring at the 
Munnsvile Wind Farm, New York 2008." Prepared for E.ON Climate and 
Renewables. January 2009.  

NY-2 

Stantec Consulting Services, Inc. "Cohocton and Dutch Hill Wind Farms: Year 
2 Post-Construction Monitoring Report, 2010." Prepared for Canandaigua 
Power Partners, LLC. And Canandaigua Power Partners II, LLC. January 
2011. 

NY-3 

Martin, C., E. Arnett, & M. Wallace. "Evaluating Bird and Bat Post-
Construction Impacts at the Sheffield Wind Facility, Vermont." Prepared for 
Bat Conservation International and First Wind. March 2013.  

VT-1 

Young, D., M. Lout, Z. Courage, S. Nomani, & K. Bay [Western EcoSystems 
Technology, Inc.]. "2011 Post-Construction Monitoring Study, Criterioin 
Wind Project, Garrett County, Maryland." Prepared for Criterion Power 
Partners, LLC. April 2012. 

MD-1a 

Young, D., C. Nations, M. Lout, & K. Bay [Western EcoSystems Technology, 
Inc.]. "2012 Post-Construction Monitoring Study, Criterion Wind Project, 
Garrett County, Maryland." Prepared for Criterion Power Partners, LLC. 
January 2013. 

MD-1b 

Stantec Consulting Services, Inc. "Record Hill Wind Project: Post-
Construction Monitoring Report, 2012." Prepared for Record Hill Wind LLC 
c/o Wagner Wind Energy I, LLC. March 2013. 

ME-1 

Young, D.P., S. Nomani, W.L. Tidhar, & K. Bay [Western EcoSystems 
Technology, Inc.]. "NedPower Mount Storm Wind Energy Facility Post-
Construction Avian and Bat Monitoring." Prepared for NedPower Mount 
Storm, LLC. February 2011. 

WV-3a 

Young, D., S. Nomani, Z. Courage, & K. Bay [Western EcoSystems 
Technology, Inc.]. "NedPower Mount Storm Wind Energy Facility Post-
Construction Avian and Bat Monitoring." Prepared for NedPower Mount 
Storm, LLC. February 2012. 

WV-3b 

Stantec Consulting Services, Inc. [formerly Woodlot Alternatives, Inc.] "2007 
Spring, Summer, and Fall Post-construction Bird and Bat Mortality Study at 
the Mars Hill Wind Farm, Maine." Prepared for UPC Wind Management, 
LLC. January 2008.  

ME-3a 

Stantec Consulting Services, Inc. "Post-construction Monitoring at the Mars 
Hill Wind Farm, Maine- Year 2." Prepared for First Wind Management, LLC. 
January 2009.  

ME-3b 

Stantec Consulting Services, Inc. "Stetson I Mountain Wind Project: Year 1 
Post-Construction Monitoring Report, 2009." Prepared for First Wind 
Management, LLC. January 2009. 

ME-4 

Tidhar, D., M. Sonnenberg, & D. Young. "2012 Post-construction Carcass 
Monitoring Study for the Beech Ridge Wind Farm Greenbrier County, West 
Virginia: Final Report April 1-October 28, 2012." Prepared for Beech Ridge 
Wind Farm, Beech Ridge Energy, LLC. January 2013. 

WV-2 
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